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Abstract. The difficulty of experimentally quantifying non-trophic species interactions has
long troubled ecologists. Increasingly, a new application of the classic “checkerboard distribu-
tion” approach is used to infer interactions by examining the pairwise frequency at which spe-
cies are found to spatially co-occur. However, the link between spatial associations, as
estimated from observational co-occurrence, and species interactions has not been tested. Here
we used nine common statistical methods to estimate associations from surveys of rocky inter-
tidal communities in the Northeast Pacific Ocean. We compared those inferred associations
with a new data set of experimentally determined net and direct species interactions. Although
association methods generated networks with aggregate structure similar to previously pub-
lished interaction networks, each method detected a different set of species associations from
the same data set. Moreover, although association methods generally performed better than a
random model, associations rarely matched empirical net or direct species interactions, with
high rates of false positives and true positives, and many false negatives. Our findings cast
doubt on studies that equate species co-occurrences to species interactions and highlight a per-
sistent, unanswered question: how do we interpret spatial patterns in communities? We suggest
future research directions to unify the observational and experimental study of species interac-
tions, and discuss the need for community standards and best practices in association analysis.

Key words: assembly; checkerboard patterns; competition; co-occurrence; joint species distribution
models; null models; pairwise dissimilarity; species associations.

INTRODUCTION

Non-trophic species interactions are difficult ecologi-
cal relationships to quantify, often requiring experiments
that are logistically infeasible. However, new applications
of a classic concept (Diamond 1975, Connor and
Simberloff 1979) facilitate the estimation of non-trophic
interactions from widely available spatial occurrence
data. Specifically, the strengths and types of species
interactions within a community are being increasingly
estimated from patterns in species spatial co-occurrences
(Sfenthourakis et al. 2006, Faisal et al. 2010, Gotelli
and Ulrich 2010, Ovaskainen et al. 2010, Faust and
Raes 2012, Veech 2013, Lane et al. 2014, Pollock et al.
2014, Harris 2016). Using these methods, if a pair of spe-
cies is found co-occurring in a community less (or more)
often than expected by chance, then they are thought to
be competitively (or positively) interacting.
Many new methods have been developed to detect spe-

cies interactions from analyses of spatial co-occurrence
data (e.g., Sfenthourakis et al. 2006, Faisal et al. 2010,
Gotelli and Ulrich 2010, Ovaskainen et al. 2010, Faust

and Raes 2012, Veech 2013, Lane et al. 2014, Pollock
et al. 2014, Harris 2016). These new methods, broadly
termed “association methods” for their ability to detect
statistical spatial associations among species, build on the
classic inference of competition from “checkerboard dis-
tributions” (Diamond 1975), which assumes that non-
trophic species interactions create spatial patterns distinct
from other assembly processes. This classic approach is
now paired with newly available large community data
sets, increasing computational power, and growing inter-
est in applying network methods across systems (Faust
and Raes 2012). However, with many of the newly avail-
able association methods, no consensus has emerged
about the best-performing method, making it difficult to
compare across studies, and thus difficult to interpret the
meaning of any one “association.”
As with association methods, how to experimentally

estimate species interactions has been long debated. Dif-
ferent experimental designs quantify different interaction
metrics associated with a range of technical and mathe-
matical definitions (Laska and Wootton 1998, Wootton
and Emmerson 2005). Experiments may ultimately reveal
little about how interactions influence community struc-
ture; two species may co-occur but not interact, two spe-
cies may interact experimentally but never co-occur. As
such, the metric of interest in the study of community
assembly may not be the direct interactions among spe-
cies, but their net effect (Cazelles et al. 2016, Harris
2016). Or, emergent community patterns may be the unit
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of interest, as they are in functional trait and community
phylogenetic approaches to assembly. Further, a pairwise,
experimental approach likely underestimates the total
number of interactions in ecosystems due to logistical
constraints. In many cases, experimentation is impossible
and alternative approaches are necessary (e.g., microbial
communities [Steele et al. 2011, Faust and Raes 2012,
Levy and Borenstein 2013, Zelezniak et al. 2015], paleoe-
cological communities [Blois et al. 2014, Lyons et al.
2016]). Finally, experiments may not capture spatial or
temporal variation in species interactions (Chamberlain
et al. 2014).
However, although most association methods are pro-

posed as hypothesis-generation tools to circumvent some
of the problems with interaction experiments, associa-
tions estimated using these methods are rarely subse-
quently tested. To our knowledge, only two studies have
compared spatially estimated interactions with observa-
tional interaction data, both with some success (insect
predation [Bell et al. 2010], microbial interactions [Levy
and Borenstein 2013]). Association methods are often val-
idated against simulated community data with known
underlying species interactions (e.g., Cazelles et al. 2016,
Harris 2016). However, models that simulate community
membership as a function of species interactions are tau-
tologically likely to show that species interactions are
detectable from community membership. Overall, spatial
co-occurrence has been proposed as a method of quanti-
fying pairwise species interactions without definitive tests
of predictive power and critiques of association methods
primarily address null model approaches (Connor and
Simberloff 1979, Schamp et al. 2015, Harris 2016).
Nevertheless, association methods are used to draw

strong inferences about species interactions and the nat-
ure of ecological processes. Classic co-occurrence theory
was derived explicitly on the assumption of competition
among the species of interest (Diamond and Gilpin
1982). However, modern co-occurrence theory imple-
mented in association analysis has been used to identify
interactions among species for which no a priori func-
tional or trophic information exists (e.g., Lima-Mendez
et al. 2015). This approach has also been used to detect
trophic interactions (Bell et al. 2010, Faisal et al. 2010),
though with uncertain predictions about whether preda-
tion should result in a positive or negative associations
(Schluter 1984, Morales-Castilla et al. 2015). Further,
association methods have been proposed for use in
resource management and human health, including for
pest management (Bell et al. 2010), in conservation deci-
sion-making (Ara�ujo et al. 2011), as indicators of
climate-driven ecosystem collapse (Griffith et al. 2018),
and to understand how human-associated microbial
interactions impact health (Faust and Raes 2012).
In this study, we examined the coherence among

experimentally estimated and occurrence-estimated spe-
cies interactions. We specifically distinguish species asso-
ciations and species interactions. Species associations
measure the degree to which the occurrence of two

species is correlated, the significance of which is deter-
mined using statistical analysis of co-occurrence. Species
interactions measure the numerical effect that one species
has on the abundance or distribution of another species,
either directly or through the net effect of both direct
and indirect pathways. Following studies showing that
the effects of species removal experiments may be pre-
dicted from observed temporal association analysis
(Wootton 2004, Sander et al. 2017), we ask whether spa-
tial co-occurrence can predict the general structure and
specific links in empirical species interaction networks.
We implemented a suite of existing methods using obser-
vational data in the species-rich Northeast Pacific rocky
intertidal ecosystem, and compared associations against
a new data set on experimentally determined direct and
net interactions from the same ecosystem.

MATERIAL AND METHODS

Community survey for association analysis

In May–September 2012, we conducted surveys at 15
locations along Oregon coast (Appendix S1). In each low
intertidal zone, we conducted nine 25 9 25 cm quadrat
surveys (except for the Manipulation Bay site, where only
seven surveys were conducted due to logistical con-
straints), for a total of 133 survey plots (see Appendix S2
for survey design sensitivity analysis). Within each plot,
we recorded presence–absence data for all species (inver-
tebrates and macrophytes). Organisms were identified to
the lowest taxonomic level possible (referred to hereafter
as “species”) and recorded in a way that considers their
functional role in the community (Appendix S1). For
analysis, 82 of the 184 species occurred fewer than three
times across all samples and were removed (56 singletons,
26 doubletons). Further, five unknown taxawere removed
(all occurring fewer than four times across all samples;
see Sensitivity analyses). Without more information, asso-
ciations with/between unknown taxa could not be com-
pared to empirical interactions, and thus were excluded
from further analysis, resulting in 97 species.

Summary and implementation of association methods

Given that there is no consensus “best” method for
association analysis, we selected the most widely used
approaches and several new ones that claim to make sig-
nificant improvements over previous methods (for more
information, see reviews by Faust and Raes [2012], Veech
[2014]). To promote reproducibility, we chose methods
implemented in a freely available programming language,
R (R Core Team 2017). These criteria resulted in nine
methods that we generalized to three categories (Table 1).
We applied each method to the community data described
above. We followed all implementation recommendations
and defaults as they are described in each original method
paper and as are operationalized in the literature. We con-
duct several sensitivity analyses below, though it is not
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within the scope of this paper to improve previous meth-
ods, nor is it the goal to develop a “best practices” for
association analysis (though see Discussion).
We summarize each method here. Further details are

available in Appendix S2 and all data to run these
models are available (https://doi.org/10.6084/m9.figshare.
5727051). Null model methods are based on permutation
of the observed data, to determine whether the permuted
data differ from the observed data. We implemented four
null model methods: pairwise co-occurrence (Gotelli and
Ulrich 2010, von Gagern et al. 2015), frequency distribu-
tion (Sfenthourakis et al. 2006) combinatorics (Veech
2013), and odds ratio (Lane et al. 2014). Correlation-
based methods infer an association between two species if
their occurrences are significantly correlated. Largely
used in microbial studies, and based on network recon-
struction methods common to studies of gene expression
(Faust and Raes 2012), correlation statistics are calcu-
lated among the distributions of all taxa, with corrections
for false discovery. In this study, we implemented a gen-
eral form of these correlation methods using three differ-
ent metrics: Pearson’s and Spearman’s correlation (Steele
et al. 2011, Faust and Raes 2012) and the NC score
(Schwager et al. 2014), which uses a metric of interaction
similar to that of Gotelli and Ulrich (2010). Finally,
partial correlation methods take into account multiple
drivers, which may be responsible for apparent observed
correlations among species occurrences. After accounting
for the effect that the environment or indirect species
interactions may have in determining the occurrence of
any one species, the remaining association among occur-
rences is used to infer a direct association (Ovaskainen
et al. 2010, Pollock et al. 2014, Morueta-Holme et al.
2016). We implemented two methods: residual covariance
from a joint species distribution model (JSDM; Golding
and Harris 2015) and partial correlation with significance
evaluated by a randomized null model.

Analysis of co-occurrence results

We first compared the structure of species association
networks generated by association methods to the struc-
ture of previously published species interaction net-
works. We quantified structure using two aggregate
properties: connectance, a metric describing the relation-
ship between number of species and number of interac-
tions among the species, and the proportion of positive
and negative links in the association network, previously
interpreted to be a signal of assembly mechanism (e.g.,
Lyons et al. 2016). We calculated connectance (C) from
the number of species (S) and the total number of links
in each network (L) such that C = L/(S 9 [S � 1]). We
compared these estimates with connectance of
previously published food webs (Dunne et al. 2002),
plant–pollinator networks (Olesen et al. 2006), and
whole-community networks (all non-trophic and trophic
interactions among all species; Sander et al. 2015, K�efi
et al. 2016). We then compared the proportion of posi-
tive and negative links to those observed in two fully
parameterized non-trophic interaction networks (Sander
et al. 2015, K�efi et al. 2016).
We then quantified the differences among association

networks using an analog of beta-diversity. We calcu-
lated the turnover in overall network structure among
all methods as a function of (1) turnover in which species
interact (i.e., different methods detected different species
as significantly associated), or (2) turnover in the sign of
species interactions (i.e., different methods estimated dif-
ferent associations between the same species pairs;
Poisot et al. 2012). Network turnover ranges from 0 to
1, representing networks that range from sharing no spe-
cies or interactions in common, to networks that are
identical in their species composition or in sign of inter-
actions. Network turnover statistics were calculated
using the “betalink” R package (Poisot et al. 2012).

TABLE 1. Comparison of model performance among association methods, comparing associations with all empirically determined
species interactions.

Category and association
method

No. species
associations

Network
connectance

False positive
rate

False negative
rate

Model
precision

Model
recall

Null model
Pairwise co-occurrence 160 0.045 0.017* 1.00 0.006 0
Frequency distribution 9,044 0.97 0.497* 0.645* 0.018+ 0.355+
Combinatorics 676 0.11 0.068* 0.998* 0.030+ 0.002+
Odds ratio 903 0.52 0.090* 0.998 0.017+ 0.002+

Correlation
Spearman’s 54 0.098 0.006* 1.00+ 0* 0*
Pearson’s 50 0.12 0.006* 1.00+ 0* 0*
NC score 68 0.097 0.007* 1.00+ 0.029+ 0*

Partial correlation
JSDM residuals 68 0.19 0.007* 1.00+ 0.061+ 0*
Partial correlation 8,646 0.93 0.486* 0.907* 0.018+ 0.193+

Notes: Each method was compared to a simulated network that randomly assigned interactions among pairs, controlling for the
connectance of each association network. Methods that had lower (higher) rates than expected by chance are designated with * (+),
at a = 0.05. See Appendix S2: Table S5 for association method performance relative to net and direct empirical interactions.
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Comparison of associations and experimentally
determined interactions

After assessing structure of networks and turnover
among networks, we compared species associations from
each method with those from a data set of experimental
species interactions. To generate this data set, we searched
the scientific literature for non-trophic species interac-
tions between any two of the species in our observational
surveys, using each scientific name as a keyword in the
ISI Web of Science Database and supplemented with data
from archived theses. Non-trophic interactions in this
ecosystem include both negative interactions (e.g., inter-
ference and exploitative competition, biological distur-
bances) and positive interactions (e.g., recruitment
facilitation, stress amelioration, habitat provisioning). We
included only non-trophic effects in this study, as the the-
ory of inferring interactions from species co-occurrence
was derived only for species engaged in non-feeding inter-
actions (Diamond 1975, Diamond and Gilpin 1982).
Although some species included in our study are known
consumers, consumers in the Oregon low intertidal zone
have little impact on spatial interactions among algae and
invertebrates (Menge et al. 2005). To ensure that the spe-
cies pool for the studies would be consistent, we restricted
the geographic extent of relevant studies to the Men-
docinian biogeographic province within which our sur-
veys were conducted (Fenberg et al. 2015).
We included both field and laboratory/mesocosm stud-

ies, but only included manipulative experiments or men-
surative studies of species interactions. Mensurative
studies were included only if there was an a priori pro-
posed interaction mechanism. An example mensurative
study for this system is examining the strength of recruit-
ment facilitation of species i by species j by counting the
number of recruits of species i on different facilitators,
including on species j (e.g., Barner et al. 2016). For each
species pair, we recorded the sign of the interaction (1, 0,
�1), whether the interaction was measured reciprocally,
and the type of study (mensurative/manipulative). We
also recorded when experiments estimated direct effects
(only two species in the experiment) or net effects (one
species manipulated, effect tracked for entire community).
With these criteria, we found 366 non-trophic interactions
among 66 taxa. A summary of these data is found in
Appendix S2: Table S2, and the entire data set is available
at (https://doi.org/10.6084/m9.figshare.5727051). Unlike
the whole-community networks of Sander et al. (2015)
and K�efi et al. (2016), our non-trophic interaction net-
work includes only experimental data and thus, despite
including data from 39 studies, likely under-samples the
interactions in this community. In particular, the con-
nectance of the empirical network is 0.039, an order of
magnitude lower than the connectance of published
whole-community networks (see Discussion).
We then asked, do any of the species associations and

experimental interactions match, either in terms of the
species pair and the sign of the interaction? For each

method, we calculated the false positive and false nega-
tive rates. A false positive rate is the rate of inferring of
an association not found in the experimental data set
(false positives), scaled by the sum of false positives and
true negatives (calculated as total possible number of
interactions minus number of empirical interactions).
False negative rate is the number of empirical interac-
tions an association method failed to detect (false nega-
tives), scaled by the sum of false negatives and true
positives (calculated as the number of empirical interac-
tions). For comparison with similar studies (e.g., Sander
et al. 2017), we calculated model precision (true posi-
tives/true positives + false positives) and model recall
(true positives/true positives + false negatives). If most
of the interactions identified in the association network
are included in the empirical network, the association
method would have high model precision. Association
methods with high model recall would both identify
most of the interactions in the empirical network.
We compared these metrics against those generated by

an Erd}os–R�enyi model, which randomly assigns interac-
tions between species with a fixed probability (Gilbert
1959). We generated 999 random networks of the same
size as our species pool (S = 97), using each association
network connectance (Table 1) as the interaction proba-
bility. Each association network was compared with
three versions of the empirical data set: the full data set,
net effects experiments, and pairwise experiments.

Sensitivity analyses

We tested for the sensitivity of our results to several
factors. First, as environmental conditions could drive
observed co-occurrences (“habitat filtering”), we tested
for the sensitivity of our results to the inclusion of envi-
ronmental covariates in each co-occurrence model. Sec-
ond, we tested for the sensitivity of our results to the
spatial grain size of our surveys (Appendix S1). We com-
pared association network inference for all methods
using data at 5 9 5, 10 9 10, 15 9 15, and 20 9 20
against the 25 9 25 cm2 results presented in the Results.
Third, as co-occurrence inference can be sensitive to spe-
cies inclusion or exclusion (e.g., Diamond and Gilpin
1982), we tested for the sensitivity of our inclusion crite-
ria by (1) including the five unidentifiable taxa, and (2)
splitting our survey data into two sets: only competing
species, only facilitators (Appendix S1). Finally, for the
association methods that rely on comparison to a null
model, we tested whether our results were sensitive to
the choice of null model algorithm. All the sensitivity
analysis details and results can be found in Appendix S2,
as these methodological considerations did not qualita-
tively change the results and conclusions we present.

RESULTS

Of the 97 species in the survey, association analysis
identified a large range of associated species, from 19 to
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all 97, with the number of associations among those spe-
cies ranging between 44 and 9,016 (Fig. 1). Compared
with previously quantified species interaction networks,
most association networks had structure that fell within
the range of previous studies, both in the number of
inferred associations and the proportional sign of those

interactions (Fig. 2). However, two of the nine associa-
tion methods tested (frequency distribution and partial
correlation with randomized null) generated networks
with hundreds to thousands more interactions than
found in even fully quantified species interaction net-
works (indicated with arrow in Fig. 2, Table 1).

FIG. 1. High turnover among species interaction and association networks. Each network shows the same 97 taxa. Arrow direc-
tion indicates the effect of species i on species j. Links are coded blue (red) for positive (negative) effects. Both the frequency distri-
bution and the partial correlation methods detected close to the maximum number of pairs, leading to a high density of links. The
interaction network depicted includes all interactions in the empirical database. See Appendix S2: Fig. S1 for Spearman’s and Pear-
son’s correlation networks and Appendix S2: Fig. S2 for node labels. Species coded in black were removed before association analy-
sis, based on the default implementation of odds ratio and correlation methods (Appendix S2). NC score is described in NC Score
Schwager et al. (2014); JSDM residuals, joint species distribution model.

FIG. 2. (a) Most association methods estimated numbers of interaction per network size within the range of published food
webs (Dunne et al. 2002), plant–pollinator networks (Olesen et al. 2006), and whole-community networks (Sander et al. 2015, K�efi
et al. 2016). (b) Association methods generally predicted similar proportions of positive links but under-predicted the number of
negative links when compared to the non-trophic links of whole-community networks. Arrow indicates the two association methods
with higher connectance than whole-community networks.
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Species association networks differed widely among
methods (mean overall network turnover = 0.78; 95%
CI: 0.70–0.87; Fig. 1). Each method estimated different
pairs of associated species and different signs of associa-
tions among species, even among methodologically simi-
lar approaches (Appendix S2). The mean turnover in
species identity was 0.40 among pairs of association net-
works (95% CI 0.33–0.46), though only five species pairs
were identified by all methods, out of a possible 9,312
possible pairs. This inconsistency is reflected in the over-
all high dissimilarity among methods in the sign of the
associations between species (mean sign turnover 0.60,
95% CI 0.52–0.69). Among species that were identified

by multiple methods, the sign of associations between
these shared species were up to 92% dissimilar. Two spe-
cies pairs were identified as having the same sign of asso-
ciation by all methods: both Corallina vancouveriensis (a
coralline algal turf)/Dilsea californica (an algal turf) and
Balanus glandula/Semibalanus cariosus (barnacles) were
identified as being positively associated.
Although most association methods performed better

than models that randomly assigned interactions among
species pairs (Table 1; Appendix S2: Table S5), species
associations matched few species interactions in the exper-
imental data set, relative to the total number of inferred
associations (low model precision; Fig. 3). For example,

FIG. 3. The proportion of associations matching species experimental interactions (model precision) ranged between 0% and
6% across all association methods. For each association method, the model precision of the association method is plotted as a verti-
cal line, against the distribution of precisions of 999 random models. Six methods performed better than random models (higher
model precision), two methods performed worse (lower model precision than random). See Appendix S2: Table S5 for comparison
of associations and interactions from net or direct interaction experiments.
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although the frequency distribution method matched 162
associations with empirical interactions, model precision
was low, due to the number of false positives (8,882 false
positives; Fig. 3). Further, methods estimated many asso-
ciations that were not in our experimental data set (low
model recall) (Fig. 1, Table 1). No method matched more
than 27% of associations with empirical interactions, and
representing only 1.8% of the total associations detected
by that method (partial correlation).
Some methods estimated many species associations,

some estimated few (Fig. 2, Table 1), but no approach
increased model precision or model recall. Even among
species pairs shared by an association network and the
experimental data set, association methods detected the
opposite interaction sign 76% of the time (95% CI 0.66,
0.85; Appendix S2: Table S4). In other words, associa-
tion methods frequently estimated competing species
pairs as mutualistic and vice-versa. Balanus glandula and
Semibalanus cariosus, although identified by all nine
association methods above as being positively associ-
ated, experimentally compete for space (Dayton 1971).
Only the odds ratio method could estimate different
reciprocal interactions, but detected associations in the
opposite direction from experimental interactions 60%
of the time (Appendix S2: Table S4). This high dissimi-
larity between association networks and the experimen-
tally determined interaction was not sensitive to the
interaction type (net effects experiments vs. pairwise
experiments; Appendix S2: Table S5).

DISCUSSION

In this study, we assessed a set of approaches to esti-
mate non-trophic species interactions from easily col-
lected and widely available spatial occurrence data. We
found that inference of species interactions is highly sen-
sitive to the statistical method used, with no “best”
method. We suggest that analysis of spatial co-occur-
rence infers a fundamentally different relationship
among species (an association) than is estimated with
species interaction experiments.
Each of the most commonly used association methods

detected a different set of species associations. A large
part of this inconsistency arises out of the ways in which
species associations are estimated, though association
networks varied widely even among a suite of conceptu-
ally similar methods (Weiss et al. 2016; Appendix S2).
With no consensus method, the results of any one study
in this growing field of research will be difficult to com-
pare to, and may conflict with, a similar study that uses
a different association method. For this reason, we asked
whether any one association method was better at repro-
ducing general properties of ecological networks than
any other method. We first considered whether associa-
tion methods generally followed empirical network scal-
ing relationships. Promisingly, most methods estimated
similar proportions of positive interactions to those
found in fully parameterized non-trophic species

interaction networks from rocky intertidal systems in
Chile and Washington, USA (Sander et al. 2015, K�efi
et al. 2016) and estimated numbers of interactions that
fall within ranges expected from the literature. For two
association methods, connectance was much larger than
in previous studies, nearly the maximum possible num-
ber of interspecific interactions for a fully connected net-
work (frequency distribution, partial correlation). For
comparison, connectance in empirical interaction net-
works is generally around 0.1 and rarely >0.3 (Dunne
et al. 2002, Olesen et al. 2006, Sander et al. 2015, K�efi
et al. 2016). However, because so few fully parameter-
ized interaction networks exist, the question remains as
to whether high connectance in these association net-
works reflects reality or statistical artifact.
Unlike previous modeling studies using simulated spe-

cies interactions (Faisal et al. 2010, Cazelles et al. 2016,
Harris 2016), we found little overlap between estimates
of species associations and experimental estimates of
species interactions. The few experimentally determined
species interactions that did match those generated by
co-occurrence analyses tended to be positive interac-
tions. For example, association analysis identified the
positive thermal amelioration of Katharina tunicata (a
mobile invertebrate chiton) by Saccharina sessilis (a
canopy-forming alga) and the recruitment facilitation of
Phyllospadix spp. (surfgrass) by Neorhodomela larix (a
turf-like alga; Appendix S2: Table S2). However, when
an association matched an interaction in the empirical
data set, the empirical reciprocal interaction had an
opposite sign most of the time. These example “positive-
positive” interactions are in reality “positive-negative”:
K. tunicata bulldozes S. sessilis and Phyllospadix out-
competes N. larix.
The reason for the discrepancies between species asso-

ciation estimates and species interaction estimates in this
study could include a mix of limitations both of the asso-
ciation methods and of our study design, or both. We
conducted a series of sensitivity analyses to address these
limitations. Inference was not improved by adjusting the
spatial grain size of co-occurrence observation, species
inclusion criteria, or null model choice, nor by account-
ing for habitat filtering (Appendix S2). However, dis-
crepancies may still be a function of (1) limitations of
the empirical interaction data set, (2) dilution of interac-
tion signals, or (3) factors that neither association analy-
sis nor experiments were designed to detect. First, a full
experimental accounting of all direct interactions in this
community, though logistically infeasible, might improve
matching between associations and interactions. A simi-
lar study found higher precision and recall than in the
present study, when comparing temporal associations
with a full empirical interaction network (Sander et al.
2017). However, to generate a full interaction network,
interactions were assigned with a mix of observational
data, experimental results, and expert knowledge
(Sander et al. 2015). We do show that certain association
methods estimate a realistic number of interactions and
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match empirical interactions at a rate higher than ran-
dom models (Figs. 2 and 3), suggesting that our compar-
isons are reasonable. We tested whether species
associations reflect net species interactions rather than
direct interactions (Cazelles et al. 2016, Harris 2016).
Model performance did not improve when we restricted
the interaction data set to include only net interaction
experiments (by the removal of one species from a com-
munity) or only pairwise experiments (Appendix S2).
Second, the signal of spatial interactions may have been
“diluted” by the inclusion of so many species (Diamond
and Gilpin 1982), but our results were not changed when
we included species expected to have positive (or nega-
tive) interactions (Appendix S2). Finally, both associa-
tion analysis and experiments are limited in their ability
to detect interactions that change in space and time,
common in natural systems (Chamberlain et al. 2014).
Further, neither approach accounts for the non-pairwise,
higher-order interactions thought to be strong in driving
community dynamics (Mayfield and Stouffer 2017).
In our choice of study system, we expected to maxi-

mize the probability of detecting a signal of spatial inter-
actions in spatial co-occurrence. Specifically, the Oregon
rocky intertidal ecosystem is characterized by sharp spa-
tial zonation produced by abiotic stress and predation.
Within the low intertidal zone, non-trophic interactions
have demonstrated spatial effects (Menge et al. 2005),
but the spatial imprints of these interactions were not
consistently distinguishable as associations in the present
study. Such a result is in stark contrast to the effect of
keystone predation in this system, which generates a
clear transition between the diverse low intertidal zone
and the less diverse mid intertidal zone dominated by
the mussel Mytilus californianus (Paine 1966). Associa-
tion analysis across zones, at the scale of tens of meters,
likely would have detected competitive exclusion by
Mytilus as a negative association. However, our coarsest
analysis was conducted at the scale of centimeters, a rele-
vant spatial scale for intertidal organisms with relatively
little mobility and the standard scale at which experi-
mental manipulations occur. Although no one spatial
grain size performed better than another, when we com-
bined all associations estimated by all methods across all
grain sizes, 71% of empirical interactions were matched.
This suggests that interactions between species play out
at different spatial scales, and only with a priori knowl-
edge of the best spatial or temporal scale at which to
detect an interaction, may association analysis correctly
detect that interaction.

Pattern and process in community ecology

Association methods are increasingly being used to
estimate species interactions, with multiple applications
across disparate disciplines. In this study, we show that
there is no relationship between experimentally deter-
mined species interactions and species associations. This
may be unsurprising, given that these two modes of

inference, association analysis and species interaction
experiments, have carried on independently for decades
and reflect differences in philosophy of ecology, spatial
scales of study, and available tools.
If associations do not map directly to pairwise empiri-

cal species interactions, can broader mechanisms of
community organization can be inferred from associa-
tions? Although our study suggests that associations
may not accurately predict interaction links, we found
that association analysis may predict aggregate commu-
nity statistics such as: the total number of interacting
species, number of interactions, and the proportion of
positive and negative interactions. As such, association
analysis may be a way to estimate higher-level properties,
if such properties can be rigorously linked to function or
mechanism. Recent papers suggest that frequencies of
positive or negative associations reflect assembly mecha-
nism (Levy and Borenstein 2013, Zelezniak et al. 2015,
Lyons et al. 2016), but no study to date has determined
which processes lead to more positive or negative associ-
ations. In other studies, changes in associations are
thought to signal shifts in system stability (Griffith et al.
2018, Kay et al. 2018).
The difficulty in inferring structuring processes from

community pattern is not isolated to association analy-
sis, but is widespread and deeply embedded in the his-
tory of ecology. Similar inferential challenges plague the
analysis of functional trait dispersion and phylogenetic
community analysis (Mayfield and Levine 2010, Adler
et al. 2013), where competition is inferred to be a pri-
mary driver of community assembly if species in the
community are more “similar” (evolutionarily or func-
tionally) than expected by chance. Observational assem-
bly analyses operate on the assumption that the
influence of species interactions on community structure
is strong enough to be detectable over the influence of
other drivers. Such analyses often rely on a snapshot of
extant community structure to infer the processes that
generate such structure (though temporally explicit
methods may not improve inference; Sander et al. 2017).
Community formation and maintenance is dynamic and
involves many processes that may not be easily disentan-
gled: trophic and non-trophic interactions, habitat filter-
ing, regional and evolutionary constraints, priority
effects, and dispersal. These other drivers could either
nullify community patterns produced by interactions, or
could themselves produce patterns indistinguishable
from those expected to be produced by interactions
(Mayfield and Levine 2010, Adler et al. 2013). For
example, dispersal can produce checkerboard co-occur-
rence patterns, the same pattern that is interpreted as a
signal of competition (Schamp et al. 2015).
The challenge of reconciling experimental results with

statistical tests for pattern in nature is not easily over-
come. When, as in this study, observed spatial patterns
do not seem to manifest underlying mechanisms, what
are the next steps? We found that no one method outper-
formed another; even statistically sophisticated tools did
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not improve model performance, suggesting that model
development may not lead to estimates of associations
that match empirical interactions. As emphasized in the
observational study of community assembly (Mayfield
and Levine 2010, Adler et al. 2013), we lack theory to
distinguish among a myriad of drivers that may produce
similar patterns in community structure, limiting our
ability to mechanistically interpret pairwise associations.
Further, although methodological best practices are well
defined for null-model analysis of whole co-occurrence
matrices (e.g., Gotelli 2000), no such common best prac-
tices exist for the practice of association analysis (but see
Blois et al. 2014, Morueta-Holme et al. 2016). Such rec-
ommendations require further development outside the
scope of this study, but important next steps include test-
ing for the influence of spatial or temporal scale on
inference, development of independent simulation mod-
els that reflect a variety of assembly mechanisms includ-
ing the role of trophic interactions, and examining
sensitivity to species inclusion or exclusion.
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